home *** CD-ROM | disk | FTP | other *** search
- /* GNUPLOT - standard.c */
- /*
- * Copyright (C) 1986, 1987, 1990 Thomas Williams, Colin Kelley
- *
- * Permission to use, copy, and distribute this software and its
- * documentation for any purpose with or without fee is hereby granted,
- * provided that the above copyright notice appear in all copies and
- * that both that copyright notice and this permission notice appear
- * in supporting documentation.
- *
- * Permission to modify the software is granted, but not the right to
- * distribute the modified code. Modifications are to be distributed
- * as patches to released version.
- *
- * This software is provided "as is" without express or implied warranty.
- *
- *
- * AUTHORS
- *
- * Original Software:
- * Thomas Williams, Colin Kelley.
- *
- * Gnuplot 2.0 additions:
- * Russell Lang, Dave Kotz, John Campbell.
- *
- * send your comments or suggestions to (pixar!info-gnuplot@sun.com).
- *
- */
-
- #include <math.h>
- #include <stdio.h>
- #include "plot.h"
-
- #ifdef vms
- #include <errno.h>
- #else
- extern int errno;
- #endif /* vms */
-
-
- extern struct value stack[STACK_DEPTH];
- extern int s_p;
- extern double zero;
-
- struct value *pop(), *complex(), *integer();
-
- double magnitude(), angle(), real(), imag();
-
- /* The bessel function approximations here are from
- * "Computer Approximations"
- * by Hart, Cheney et al.
- * John Wiley & Sons, 1968
- */
-
- /* There appears to be a mistake in Hart, Cheney et al. on page 149.
- * Where it list Qn(x)/x ~ P(z*z)/Q(z*z), z = 8/x, it should read
- * Qn(x)/z ~ P(z*z)/Q(z*z), z = 8/x
- * In the functions below, Qn(x) is implementated using the later
- * equation.
- * These bessel functions are accurate to about 1e-13
- */
-
- #define PI_ON_FOUR 0.78539816339744830961566084581987572
- #define PI_ON_TWO 1.57079632679489661923131269163975144
- #define THREE_PI_ON_FOUR 2.35619449019234492884698253745962716
- #define TWO_ON_PI 0.63661977236758134307553505349005744
-
- static double dzero = 0.0;
-
- /* jzero for x in [0,8]
- * Index 5849, 19.22 digits precision
- */
- static double pjzero[] = {
- 0.4933787251794133561816813446e+21,
- -0.11791576291076105360384408e+21,
- 0.6382059341072356562289432465e+19,
- -0.1367620353088171386865416609e+18,
- 0.1434354939140346111664316553e+16,
- -0.8085222034853793871199468171e+13,
- 0.2507158285536881945555156435e+11,
- -0.4050412371833132706360663322e+8,
- 0.2685786856980014981415848441e+5
- };
-
- static double qjzero[] = {
- 0.4933787251794133562113278438e+21,
- 0.5428918384092285160200195092e+19,
- 0.3024635616709462698627330784e+17,
- 0.1127756739679798507056031594e+15,
- 0.3123043114941213172572469442e+12,
- 0.669998767298223967181402866e+9,
- 0.1114636098462985378182402543e+7,
- 0.1363063652328970604442810507e+4,
- 0.1e+1
- };
-
- /* pzero for x in [8,inf]
- * Index 6548, 18.16 digits precision
- */
- static double ppzero[] = {
- 0.2277909019730468430227002627e+5,
- 0.4134538663958076579678016384e+5,
- 0.2117052338086494432193395727e+5,
- 0.348064864432492703474453111e+4,
- 0.15376201909008354295771715e+3,
- 0.889615484242104552360748e+0
- };
-
- static double qpzero[] = {
- 0.2277909019730468431768423768e+5,
- 0.4137041249551041663989198384e+5,
- 0.2121535056188011573042256764e+5,
- 0.350287351382356082073561423e+4,
- 0.15711159858080893649068482e+3,
- 0.1e+1
- };
-
- /* qzero for x in [8,inf]
- * Index 6948, 18.33 digits precision
- */
- static double pqzero[] = {
- -0.8922660020080009409846916e+2,
- -0.18591953644342993800252169e+3,
- -0.11183429920482737611262123e+3,
- -0.2230026166621419847169915e+2,
- -0.124410267458356384591379e+1,
- -0.8803330304868075181663e-2,
- };
-
- static double qqzero[] = {
- 0.571050241285120619052476459e+4,
- 0.1195113154343461364695265329e+5,
- 0.726427801692110188369134506e+4,
- 0.148872312322837565816134698e+4,
- 0.9059376959499312585881878e+2,
- 0.1e+1
- };
-
-
- /* yzero for x in [0,8]
- * Index 6245, 18.78 digits precision
- */
- static double pyzero[] = {
- -0.2750286678629109583701933175e+20,
- 0.6587473275719554925999402049e+20,
- -0.5247065581112764941297350814e+19,
- 0.1375624316399344078571335453e+18,
- -0.1648605817185729473122082537e+16,
- 0.1025520859686394284509167421e+14,
- -0.3436371222979040378171030138e+11,
- 0.5915213465686889654273830069e+8,
- -0.4137035497933148554125235152e+5
- };
-
- static double qyzero[] = {
- 0.3726458838986165881989980739e+21,
- 0.4192417043410839973904769661e+19,
- 0.2392883043499781857439356652e+17,
- 0.9162038034075185262489147968e+14,
- 0.2613065755041081249568482092e+12,
- 0.5795122640700729537380087915e+9,
- 0.1001702641288906265666651753e+7,
- 0.1282452772478993804176329391e+4,
- 0.1e+1
- };
-
-
- /* jone for x in [0,8]
- * Index 6050, 20.98 digits precision
- */
- static double pjone[] = {
- 0.581199354001606143928050809e+21,
- -0.6672106568924916298020941484e+20,
- 0.2316433580634002297931815435e+19,
- -0.3588817569910106050743641413e+17,
- 0.2908795263834775409737601689e+15,
- -0.1322983480332126453125473247e+13,
- 0.3413234182301700539091292655e+10,
- -0.4695753530642995859767162166e+7,
- 0.270112271089232341485679099e+4
- };
-
- static double qjone[] = {
- 0.11623987080032122878585294e+22,
- 0.1185770712190320999837113348e+20,
- 0.6092061398917521746105196863e+17,
- 0.2081661221307607351240184229e+15,
- 0.5243710262167649715406728642e+12,
- 0.1013863514358673989967045588e+10,
- 0.1501793594998585505921097578e+7,
- 0.1606931573481487801970916749e+4,
- 0.1e+1
- };
-
-
- /* pone for x in [8,inf]
- * Index 6749, 18.11 digits precision
- */
- static double ppone[] = {
- 0.352246649133679798341724373e+5,
- 0.62758845247161281269005675e+5,
- 0.313539631109159574238669888e+5,
- 0.49854832060594338434500455e+4,
- 0.2111529182853962382105718e+3,
- 0.12571716929145341558495e+1
- };
-
- static double qpone[] = {
- 0.352246649133679798068390431e+5,
- 0.626943469593560511888833731e+5,
- 0.312404063819041039923015703e+5,
- 0.4930396490181088979386097e+4,
- 0.2030775189134759322293574e+3,
- 0.1e+1
- };
-
- /* qone for x in [8,inf]
- * Index 7149, 18.28 digits precision
- */
- static double pqone[] = {
- 0.3511751914303552822533318e+3,
- 0.7210391804904475039280863e+3,
- 0.4259873011654442389886993e+3,
- 0.831898957673850827325226e+2,
- 0.45681716295512267064405e+1,
- 0.3532840052740123642735e-1
- };
-
- static double qqone[] = {
- 0.74917374171809127714519505e+4,
- 0.154141773392650970499848051e+5,
- 0.91522317015169922705904727e+4,
- 0.18111867005523513506724158e+4,
- 0.1038187585462133728776636e+3,
- 0.1e+1
- };
-
-
- /* yone for x in [0,8]
- * Index 6444, 18.24 digits precision
- */
- static double pyone[] = {
- -0.2923821961532962543101048748e+20,
- 0.7748520682186839645088094202e+19,
- -0.3441048063084114446185461344e+18,
- 0.5915160760490070618496315281e+16,
- -0.4863316942567175074828129117e+14,
- 0.2049696673745662182619800495e+12,
- -0.4289471968855248801821819588e+9,
- 0.3556924009830526056691325215e+6
- };
-
- static double qyone[] = {
- 0.1491311511302920350174081355e+21,
- 0.1818662841706134986885065935e+19,
- 0.113163938269888452690508283e+17,
- 0.4755173588888137713092774006e+14,
- 0.1500221699156708987166369115e+12,
- 0.3716660798621930285596927703e+9,
- 0.726914730719888456980191315e+6,
- 0.10726961437789255233221267e+4,
- 0.1e+1
- };
-
-
- f_real()
- {
- struct value a;
- push( complex(&a,real(pop(&a)), 0.0) );
- }
-
- f_imag()
- {
- struct value a;
- push( complex(&a,imag(pop(&a)), 0.0) );
- }
-
- f_arg()
- {
- struct value a;
- push( complex(&a,angle(pop(&a)), 0.0) );
- }
-
- f_conjg()
- {
- struct value a;
- (void) pop(&a);
- push( complex(&a,real(&a),-imag(&a) ));
- }
-
- f_sin()
- {
- struct value a;
- (void) pop(&a);
- push( complex(&a,sin(real(&a))*cosh(imag(&a)), cos(real(&a))*sinh(imag(&a))) );
- }
-
- f_cos()
- {
- struct value a;
- (void) pop(&a);
- push( complex(&a,cos(real(&a))*cosh(imag(&a)), -sin(real(&a))*sinh(imag(&a))));
- }
-
- f_tan()
- {
- struct value a;
- register double den;
- (void) pop(&a);
- if (imag(&a) == 0.0)
- push( complex(&a,tan(real(&a)),0.0) );
- else {
- den = cos(2*real(&a))+cosh(2*imag(&a));
- if (den == 0.0) {
- undefined = TRUE;
- push( &a );
- }
- else
- push( complex(&a,sin(2*real(&a))/den, sinh(2*imag(&a))/den) );
- }
- }
-
- f_asin()
- {
- struct value a;
- register double alpha, beta, x, y;
- (void) pop(&a);
- x = real(&a); y = imag(&a);
- if (y == 0.0) {
- if (fabs(x) > 1.0) {
- undefined = TRUE;
- push(complex(&a,0.0, 0.0));
- } else
- push( complex(&a,asin(x),0.0) );
- } else {
- beta = sqrt((x + 1)*(x + 1) + y*y)/2 - sqrt((x - 1)*(x - 1) + y*y)/2;
- alpha = sqrt((x + 1)*(x + 1) + y*y)/2 + sqrt((x - 1)*(x - 1) + y*y)/2;
- push( complex(&a,asin(beta), log(alpha + sqrt(alpha*alpha-1))) );
- }
- }
-
- f_acos()
- {
- struct value a;
- register double alpha, beta, x, y;
- (void) pop(&a);
- x = real(&a); y = imag(&a);
- if (y == 0.0) {
- if (fabs(x) > 1.0) {
- undefined = TRUE;
- push(complex(&a,0.0, 0.0));
- } else
- push( complex(&a,acos(x),0.0) );
- } else {
- alpha = sqrt((x + 1)*(x + 1) + y*y)/2 + sqrt((x - 1)*(x - 1) + y*y)/2;
- beta = sqrt((x + 1)*(x + 1) + y*y)/2 - sqrt((x - 1)*(x - 1) + y*y)/2;
- push( complex(&a,acos(beta), log(alpha + sqrt(alpha*alpha-1))) );
- }
- }
-
- f_atan()
- {
- struct value a;
- register double x, y;
- (void) pop(&a);
- x = real(&a); y = imag(&a);
- if (y == 0.0)
- push( complex(&a,atan(x), 0.0) );
- else if (x == 0.0 && fabs(y) == 1.0) {
- undefined = TRUE;
- push(complex(&a,0.0, 0.0));
- } else
- push( complex(&a,atan(2*x/(1-x*x-y*y)),
- log((x*x+(y+1)*(y+1))/(x*x+(y-1)*(y-1)))/4) );
- }
-
- f_sinh()
- {
- struct value a;
- (void) pop(&a);
- push( complex(&a,sinh(real(&a))*cos(imag(&a)), cosh(real(&a))*sin(imag(&a))) );
- }
-
- f_cosh()
- {
- struct value a;
- (void) pop(&a);
- push( complex(&a,cosh(real(&a))*cos(imag(&a)), sinh(real(&a))*sin(imag(&a))) );
- }
-
- f_tanh()
- {
- struct value a;
- register double den;
- (void) pop(&a);
- den = cosh(2*real(&a)) + cos(2*imag(&a));
- push( complex(&a,sinh(2*real(&a))/den, sin(2*imag(&a))/den) );
- }
-
- f_int()
- {
- struct value a;
- push( integer(&a,(int)real(pop(&a))) );
- }
-
-
- f_abs()
- {
- struct value a;
- (void) pop(&a);
- switch (a.type) {
- case INT:
- push( integer(&a,abs(a.v.int_val)) );
- break;
- case CMPLX:
- push( complex(&a,magnitude(&a), 0.0) );
- }
- }
-
- f_sgn()
- {
- struct value a;
- (void) pop(&a);
- switch(a.type) {
- case INT:
- push( integer(&a,(a.v.int_val > 0) ? 1 :
- (a.v.int_val < 0) ? -1 : 0) );
- break;
- case CMPLX:
- push( integer(&a,(a.v.cmplx_val.real > 0.0) ? 1 :
- (a.v.cmplx_val.real < 0.0) ? -1 : 0) );
- break;
- }
- }
-
-
- f_sqrt()
- {
- struct value a;
- register double mag, ang;
- (void) pop(&a);
- mag = sqrt(magnitude(&a));
- if (imag(&a) == 0.0 && real(&a) < 0.0)
- push( complex(&a,0.0,mag) );
- else
- {
- if ( (ang = angle(&a)) < 0.0)
- ang += 2*Pi;
- ang /= 2;
- push( complex(&a,mag*cos(ang), mag*sin(ang)) );
- }
- }
-
-
- f_exp()
- {
- struct value a;
- register double mag, ang;
- (void) pop(&a);
- mag = exp(real(&a));
- ang = imag(&a);
- push( complex(&a,mag*cos(ang), mag*sin(ang)) );
- }
-
-
- f_log10()
- {
- struct value a;
- register double l10;;
- (void) pop(&a);
- l10 = log(10.0); /***** replace with a constant! ******/
- push( complex(&a,log(magnitude(&a))/l10, angle(&a)/l10) );
- }
-
-
- f_log()
- {
- struct value a;
- (void) pop(&a);
- push( complex(&a,log(magnitude(&a)), angle(&a)) );
- }
-
-
- f_floor()
- {
- struct value a;
-
- (void) pop(&a);
- switch (a.type) {
- case INT:
- push( integer(&a,(int)floor((double)a.v.int_val)));
- break;
- case CMPLX:
- push( integer(&a,(int)floor(a.v.cmplx_val.real)));
- }
- }
-
-
- f_ceil()
- {
- struct value a;
-
- (void) pop(&a);
- switch (a.type) {
- case INT:
- push( integer(&a,(int)ceil((double)a.v.int_val)));
- break;
- case CMPLX:
- push( integer(&a,(int)ceil(a.v.cmplx_val.real)));
- }
- }
-
- #ifdef GAMMA
-
- f_gamma()
- {
- extern int signgam;
- register double y;
- struct value a;
-
- y = GAMMA(real(pop(&a)));
- if (y > 88.0) {
- undefined = TRUE;
- push( integer(&a,0) );
- }
- else
- push( complex(&a,signgam * exp(y),0.0) );
- }
-
- #endif /* GAMMA */
-
-
- /* bessel function approximations */
- double jzero(x)
- double x;
- {
- double p, q, x2;
- int n;
-
- x2 = x * x;
- p = pjzero[8];
- q = qjzero[8];
- for (n=7; n>=0; n--) {
- p = p*x2 + pjzero[n];
- q = q*x2 + qjzero[n];
- }
- return(p/q);
- }
-
- double pzero(x)
- double x;
- {
- double p, q, z, z2;
- int n;
-
- z = 8.0 / x;
- z2 = z * z;
- p = ppzero[5];
- q = qpzero[5];
- for (n=4; n>=0; n--) {
- p = p*z2 + ppzero[n];
- q = q*z2 + qpzero[n];
- }
- return(p/q);
- }
-
- double qzero(x)
- double x;
- {
- double p, q, z, z2;
- int n;
-
- z = 8.0 / x;
- z2 = z * z;
- p = pqzero[5];
- q = qqzero[5];
- for (n=4; n>=0; n--) {
- p = p*z2 + pqzero[n];
- q = q*z2 + qqzero[n];
- }
- return(p/q);
- }
-
- double yzero(x)
- double x;
- {
- double p, q, x2;
- int n;
-
- x2 = x * x;
- p = pyzero[8];
- q = qyzero[8];
- for (n=7; n>=0; n--) {
- p = p*x2 + pyzero[n];
- q = q*x2 + qyzero[n];
- }
- return(p/q);
- }
-
- double rj0(x)
- double x;
- {
- if ( x <= 0.0 )
- x = -x;
- if ( x < 8.0 )
- return(jzero(x));
- else
- return( sqrt(TWO_ON_PI/x) *
- (pzero(x)*cos(x-PI_ON_FOUR) - 8.0/x*qzero(x)*sin(x-PI_ON_FOUR)) );
-
- }
-
- double ry0(x)
- double x;
- {
- if ( x < 0.0 )
- return(dzero/dzero); /* error */
- if ( x < 8.0 )
- return( yzero(x) + TWO_ON_PI*rj0(x)*log(x) );
- else
- return( sqrt(TWO_ON_PI/x) *
- (pzero(x)*sin(x-PI_ON_FOUR) +
- (8.0/x)*qzero(x)*cos(x-PI_ON_FOUR)) );
-
- }
-
-
- double jone(x)
- double x;
- {
- double p, q, x2;
- int n;
-
- x2 = x * x;
- p = pjone[8];
- q = qjone[8];
- for (n=7; n>=0; n--) {
- p = p*x2 + pjone[n];
- q = q*x2 + qjone[n];
- }
- return(p/q);
- }
-
- double pone(x)
- double x;
- {
- double p, q, z, z2;
- int n;
-
- z = 8.0 / x;
- z2 = z * z;
- p = ppone[5];
- q = qpone[5];
- for (n=4; n>=0; n--) {
- p = p*z2 + ppone[n];
- q = q*z2 + qpone[n];
- }
- return(p/q);
- }
-
- double qone(x)
- double x;
- {
- double p, q, z, z2;
- int n;
-
- z = 8.0 / x;
- z2 = z * z;
- p = pqone[5];
- q = qqone[5];
- for (n=4; n>=0; n--) {
- p = p*z2 + pqone[n];
- q = q*z2 + qqone[n];
- }
- return(p/q);
- }
-
- double yone(x)
- double x;
- {
- double p, q, x2;
- int n;
-
- x2 = x * x;
- p = 0.0;
- q = qyone[8];
- for (n=7; n>=0; n--) {
- p = p*x2 + pyone[n];
- q = q*x2 + qyone[n];
- }
- return(p/q);
- }
-
- double rj1(x)
- double x;
- {
- double v,w;
- v = x;
- if ( x < 0.0 )
- x = -x;
- if ( x < 8.0 )
- return(v*jone(x));
- else {
- w = sqrt(TWO_ON_PI/x) *
- (pone(x)*cos(x-THREE_PI_ON_FOUR) -
- 8.0/x*qone(x)*sin(x-THREE_PI_ON_FOUR)) ;
- if (v < 0.0)
- w = -w;
- return( w );
- }
- }
-
- double ry1(x)
- double x;
- {
- if ( x <= 0.0 )
- return(dzero/dzero); /* error */
- if ( x < 8.0 )
- return( x*yone(x) + TWO_ON_PI*(rj1(x)*log(x) - 1.0/x) );
- else
- return( sqrt(TWO_ON_PI/x) *
- (pone(x)*sin(x-THREE_PI_ON_FOUR) +
- (8.0/x)*qone(x)*cos(x-THREE_PI_ON_FOUR)) );
- }
-
-
- f_besj0()
- {
- struct value a;
- double x;
- (void) pop(&a);
- if (imag(&a) > zero)
- int_error("can only do bessel functions of reals",NO_CARET);
- push( complex(&a,rj0(real(&a)),0.0) );
- }
-
-
- f_besj1()
- {
- struct value a;
- double x;
- (void) pop(&a);
- if (imag(&a) > zero)
- int_error("can only do bessel functions of reals",NO_CARET);
- push( complex(&a,rj1(real(&a)),0.0) );
- }
-
-
- f_besy0()
- {
- struct value a;
- double x;
- (void) pop(&a);
- if (imag(&a) > zero)
- int_error("can only do bessel functions of reals",NO_CARET);
- if (real(&a) > 0.0)
- push( complex(&a,ry0(real(&a)),0.0) );
- else {
- push( complex(&a,0.0,0.0) );
- undefined = TRUE ;
- }
- }
-
-
- f_besy1()
- {
- struct value a;
- double x;
- (void) pop(&a);
- if (imag(&a) > zero)
- int_error("can only do bessel functions of reals",NO_CARET);
- if (real(&a) > 0.0)
- push( complex(&a,ry1(real(&a)),0.0) );
- else {
- push( complex(&a,0.0,0.0) );
- undefined = TRUE ;
- }
- }
-